TheoLt Release 10 is GO!

Watch this space for full details of the updates, the improvements and how-to’s !

Existing users should contact us now for update details.

TheoLt, TheoLt Contour and TheoLt Tools now improve the productivity of BricsCAD to V17 and AutoCAD to Release 2017 for anyone using Total Station, Laser Distance Meters or Laser Scan Data for the productions of plans or elevations.

VirtuSurv Webinar

Webinar introducing functionality of kubit VirtuSurv, high resolution scan data in a simple to use, virtual surveying environment. Connect to any CAD interface including AutoCAD, AutoCAD LT and IntelliCAD. Connect to any Windows based program (Excel, Word and more). Make use of 3D laser scan data without the need for a high level of technical skill. Perform traditional survey from your office.

PointCloud 7 is now available

We are pleased to announce that the latest version of kubit’s PointCloud software for AutoCAD is now available for download.

The new features include:

  • Support of AutoCAD 2012 and Autodesk products based on AutoCAD 2012.
  • New product family “PointSense”. The first of this new family will be released in the UK in July. “PointSense Plant” is a catalog driven plant modelling tool that identifies pipe fittings from a catalog and matches them to the cloud.
  • Generation of Ortho Images from point clouds including “X-Ray”. Included in the “Basic” and “Pro” variants images may be created which could enable off-line tracing of detail to create 2D drawings.
  • Fit cylinder with just two clicks (AutoCAD 2010 and higher). A faster and easier method to fitting pipes than previous releases.
  • “Flatten drawing“ – project geometry to a UCS. For delivering 2D drawings from 3D wireframe.
  • “SmartSection” for detailed display of AutoCAD point clouds (PCG). One of the disadvantages of the PCG engine in AutoCAD is the density of the point display. Smart sections enable the current working section of the cloud to be displayed in it’s full density.
  • Improvements to the image orientation workflow. Controlling the viewports and view is vital for fast modelling. Release 7 eases this with a number of new commands.
  • Support for “Ribbons” in AutoCAD 2010 to 2012: an alternative for the classic menu and toolbars (actually takes less space than showing all toolbars)

PointCloud Release 7 supports All 32 bit and 64 bit versions of Windows 7, Vista and XP (Windows 2000 is no longer supported).

Each of these new features will be examined in forthcoming posts.

Release 7 is provided free of charge to existing users on subscription but please remember to request your upgraded license before installation.

Pointclouds in AutoCAD 2011

One of the (much hyped) new features of AutoCAD 2011 was the inclusion of handling pointcloud data. In this post we will take a quick look at this functionality and how you can make real use of this.

The first issue is that AutoCAD can only read specific (limited) pointcloud formats; LAS, XYB and the 2 Faro formats FLS and FWS. Many users will find this a limitation and need further formats. Further formats may be imported by adding the free version of PointCloud from kubit. The product page is here and the software may be downloadedhere. PointCloud adds the formats PTZ, RiScan Pro and ASCII (CSV, TXT etc).

The workflow of importing pointcloud data is to first index the supplied file to create a PCG file which is Autodesk’s pointcloud format.

This PCG file may be attached in the same way as any other AutoCAD block or image file.

The method of display of the points depends on the current AutoCAD Visual Style. A 2D non-rendered (2D) style displays all of the points in a single colour: black. Selecting a rendered (shaded / 3D) style displays the points in colour.

AutoCAD manages the number of points displayed on the screen. At first loading the density of the points displayed may appear rather thin. Select the density command. Here I have set the value 70. The display is now far more usable. You will find the pan and orbit are very quick and all points within the cloud may be via the Node object snap.

Many will view the fact that AutoCAD can only display the whole cloud or no cloud as a major limitation, this is another limitation that may be bypassed with kubit’s PointCloud software although this further functionality requires the paid version.

PointCloud allows the definition of sections which may be managed in the section manager. These may be created in the following ways;

  • Slice
  • (Shift slice up/down and change slice thickness)
  • (Multiple slices: Parallel or perpendicular to objects/curves)
  • Clipping Box
  • Clipping Polygon (2D projection, inside or outside remains visible).

A typical use of the slice command is to create a plan.

This of course may then be traced. If the version of PointCloud being used is the Pro version then the Automatic Fitting may be used to fit the plan to the slice. This is completed by drawing a very approximate polyline (with the correct number of corners) and selecting the Fit Polygon command.

Working with elevations is a key use of PointCloud data. This however shows another weakness in the AutoCAD  pointcloud display. The density of the data displayed may not be sufficient for tracing details.

Again, PointCloud may come to the rescue here. Using the section manager individual sections of the data set may be saved in PTC format – the native format of kubit’s PointCloud (which enables the support for PointCloud data in AutoCAD’s prior to 2011). The display of the PTC is far denser allowing the details to be seen clearly.

Edit/Note: Release 7, released in May 2011 introduced “SmartSections” a new way of creating and working with this higher density display. The new SmartSections are faster and simpler to use. End Edit/Note.

A further tool within PointCloud is Plane fitting. This enables a plane to be fitted to a number of points and in the case of elevations, the UCS placed on this plane ensuring the elevation is drawn in the correct position.

At first glance it may seem that are are too many disadvantages to using the Autodesk PCG engine and other tools provide a better solution. However when you consider that the PCG engine allows up to 2 billlion points to be inserted into AutoCAD I would suggest that PCG + PointCloud is the ideal tool to manage the dataset within AutoCAD, creating overall plans and views.  with sectioning the data to PTC sections for detail extraction. Take time to download and evaluate PointCloud, again details here.

TheoLt: Powerful Flexible Features.

One of the great advantages of TheoLt compared to other survey software is it’s complete flexibility.  For example, lets take a look at the “Features Library”.

The basic premise of TheoLt is that it transfers the measurement information or point from a survey instrument (or Distance Meter) to CAD to be used by any command  (for example, draw lines, insert blocks etc). What the TheoLt Features Library enables is for a series of measurements to be combined to insert a series of lines, arcs or attributed blocks (much like standard survey “feature coding”).

The feature definitions are accessed through the the settings dialog in the main TheoLt window. Definitions are grouped into folders.

Looking at it’s simplest use, inserting a single attributed block as a detail point. The first stage is to name the feature , define it’s icon and the number of measurements that should be taken to insert the feature. In this case, a single 3D measurement.

The next stage is to define any user attributes that may be required and whether confirmation is required (asking the user to confirm the values). Finally select the block to be inserted.

Once defined, opening the features panel will show the newly created item and a single click on the apropraite icon in the feature  palette will prompt for the measurement and the block will be inserted.

Next we can look at a more complex but typical use; kerbs tops and bottom in topographic survey. The aim here is to pick points on the top and the bottom of the kerbs, connecting the points, inserting blocks and annotating levels. This is very typical of topographic survey. Our definition will be point on top of kerb, point on bottom of kerb before moving on to the next part of the kerb.

Defining the feature, we name it and use 2 3D measurements with correct prompts. As we wish to join the points with lines, we will select “repeat insert” and join points on Layer (each point type having it’s own layer). This will allow the lines to be continued for as many measurements as required before exiting the command.  The attributes will be the Z-level of the first point only and two blocks will be inserted, each on it’s own layer.

Now when selecting the feature from the palate, the measurements are prompted, blocks are inserted and then the first prompt starts again. After the next round of observations, lines are drawn between the respective points on their designated layers. Options allow the lines to be curved, straight  and the alignment of the annotation to be altered or disabled.

The final example is a single complex item; a tree. To measure one fully quite a few measurements are required; the centre of the main trunk, the girth of the trunk, horizontal extent of the canopy and finally the vertical extent (height). These can be defined in the first window with prompts and measurement types. I would assume that for the first measurement the operator would take the angle to the centre of the trunk before taking the distance to the centre. This would leave the instrument pointing to the extent of the girth which we can collect as an angle only measurement. We can also choose to write the details out to a file which can contain any of the collected data fields for processing.

Next we will create the attributes where we will also collect the tree type which will be stored in a list to speed up the user input.

Finally we insert a block to represent the trunk – scaled to match the girth. A second block will be inserted, scaled to math the canopy.  An attributed block is inserted to hold the details of the tree (in addition to the file written above).

Obviously, this is not an in-depth analysis of what is possible from the features palate but I hope it gives some indication of the power within TheoLt.

TheoLt PRO: Traversing

These days big traverses are becoming a rarity. The GPS active net is doing a better job for many survey projects. Traversing is still the best way for getting good control for small sites, setting out, architectural photogrammetry and building survey. I remember the happy time at field school in Wales with booking sheet and pencil, baking in the summer sun, each station in turn becoming a kind of holiday home as we carefully logged back-sight and foresight obs. We got to live outdoors and enjoy it. So, given that this is the backbone of my work, why do I hate it so much?

It is the inevitable disappointment when, at computation, I discover the blunders! All the wonderful effort of getting stations set out, carrying forward heights, multiple obs is lost when the numbers don’t come out! Each time I set out to traverse I have the optimism of a child on a trip to the seaside only to face the bitter disappointment of having to repeat the work to get it right. This is something I have grown used to: traversing is a game of errors and I have, over the years, found out how to get the results I want. In truth I have never been happy with simply surveying for numbers, for me I want to see a drawing, detail, I want that map to grow, to make my mental map real; a schedule of co-ordinates to me is no thing of beauty. So what to do about it?

I can’t do my job without control; I’ll never forget the wise words of Peter Waldhausl when I asked him the teacher’s question: ‘what is the single most important thing to teach in survey?’  his answer, without hesitation, was very clear: ‘NO ACTION WITHOUT CONTROL!’

It’s thrilling to drive in the first peg on un-surveyed territory, this is without doubt part of the elemental appeal of surveying (it’s certainly is NOT the money…few of us are well paid and even fewer of us manage to keep our jobs!) we are part of making the unknown known in a very real way. Anxieties about control can be helped by getting the right tools and first and foremost in these tools is software! I use real-time software that tells me where I’m going wrong when I make the mistakes. Now I know this is not proof against blunder but it definitely helps! Keeping track of where the errors are is one thing but I’m amazed at how much gets in the way of your best rehearsed procedures when you are traversing: for crying out loud there are only 4 things to do:

1. Log the instrument and target heights of collimation (HoC).

2. Achieve and verify orientation.

3. Observe and book shots to back-sight & fore-sight.

4. Set out new station as required.

So what goes wrong?

Plenty! You forget which station you are at and use the wrong station ID, you set out a station then find the sight-line blocked, somebody ( it’s never you!) kicks a tripod and you have to re-set the HoC and retake the station orientation, you select the wrong HoC for the orientation shots, you forget to take the last angle in the loop because you think you already have the shot done as you have ‘been here before’ not to mention the lost marks, last minute datum changes, miss-matched tribrachs, ‘helpful’ people moving setups before they are measured, it starts raining etc.

The software definitely helps, I have a strong tendency to argue with it but I’m learning to trust it (yes I’m pretty stubborn like that I’m afraid).  The Netadjust tool in TheoLt Pro is what keeps my traverses on the straight and narrow.

It has some really good ‘idiot proof’ features which this idiot has learnt to adopt as procedural reinforcement:

Real-time feedback of station selection at occupation and orientation. I get a ‘heads up’ message on completing an orientation that advises me of the staion IDs, the HoCs and the precision of the orientation.

Automatic prompting of HoCs. Every time I take shot to a target I get a prompt, I can turn this off, but this is my most common foul up, its very difficult to ‘unpick’ HoC errors even though it is usually very easy to see where they occur.

Traffic light coloured observation results. This really is the best bit for me, TheoLt will let you know how good your shots are as you take them, you can drop the ‘bad’ obs from the computation, re-shoot or go right back and re-do the orientation again.

Automatic target ID. When you shoot a target with a known position you are prompted with its ID, a simple hint saving a mountain of time searching through tables to find a station ID.

Live diagram. I can preview my loop in AutoCAD/BricsCAD at any time; if it don’t look right it ain’t right. The diagram tells the story.

Non destructive back-up of raw data.  You can run the calc and see what happens at any point in the loop and still have the original observation data logged for QA.

Least squares distribution of error. TheoLt through its partnership with kubit uses a powerful network adjustment algorithm. By moving away from Bowditch (sob!) towards a distributed error network the traverse can be extended to include resections.

TheoLt orientation procedure builds the network data table which shows how good the shots are, how many shots there are in the set and allows you to include or exclude a shot from the computation. I can get reports out on the condition of the network when I run the calc to test the impact of the include/exclude options I use:

Let’s take a look at the report:

TheoLt NetAdjust does traversing nicely but there are drawbacks, its not something I would expect the whole survey world to use. It’s dependent on a PC so its not going to be what I would use on a windswept fellside in driving rain. For me it’s a godsend simply because I can get good control without fuss and move on to what I want to do…draw!

Control networks are essential for a complex building plan. The exterior can often be controlled by a fairly traditional loop with some fun & games to accept GPS points. Once tied to the exterior loop the interior can usually be fixed by resection throughout.

There is always something that gets in the way!

A control network needs to provide points with a higher order of precision than simple polar observations. Easy to say, a fiddle to do, but a whole lot simpler with TheoLt!

More on the TheoLt story here:

DistToPlan: Tools for building survey.

For quite a while now the Disto© has been the weapon of choice for surveyors doing 2D building plans, it has the huge advantage of being a one handed tool that replicates, in part at least, the familiar actions of ‘hand measurement’ viz, rod tape and dimensioned sketch. The big problem with the Disto© is that it doesn’t really automate the measured drawing process.

So simply put the Disto© problem is: ‘how do you get from measurement to drawing?’

We kissed our drawing boards goodbye a long time ago and in doing so started a process of making manual practices fit into CAD workflows. This has been an awkward at best but we can’t ignore the fact that CAD is the most important communication tool for measured graphic information today.

LatimerCAD Ltd has developed DistToPlan in conjunction with kubit Gmbh to bridge the gap between device and drawing.

Unlike almost any other surveying sensor, the Disto© generates data with no direction or position information. It is quite possible to use the ‘raw’ Disto© data to plot lines in CAD but this involves a great deal of  detailed command line entry to gain positional control of every distance measured. DistToPlan provides the necessary human interface with the drawing by automating as much as possible the geometry alignment procedures that are second nature in drawing board practice. Working with Disto became a lot easier with the advent of the Bluetooth interface which meant the surveyor doesn’t need 3 arms to operate CAD, Disto© and drawing together.

Having evolved over the last 5 years through extensive field trials and comprehensive commercial  testing a 4 method toolset has emerged which adresses the needs of the majority of measured survey practitioners. The final development strategy encompasses the 4 main methods surveyors use to produce plans:

1. Follow the wall – Where a line is plotted by fixed directions (up, down, left, right)  to enclose a perimeter and then brace with diagonals as a check.

2. Triangulation- The plan is determined by the intersects of arcs from a base, each base in turn linked by pairs of arcs.

3. Build up from boxes – Using the simplest plan form and then adapting it to conform to the measurements. ( In the manner of using squared paper to rule up the drawing)

4. Sketch & Measure – A freeform sketch is prepared and then scaled to fit.

DistToPlan will work in any one of these methods by placing the measurements into CAD when cued by the apropriate stage of the chosen method.

Let’s look at a number of common situations where DisToPlan works with the surveyors chosen strategy for measurement and CAD plotting:

Scenario 1: the plan is square and the scale requirement is relaxed (1:100 ‘outline’ survey) and there is a need to build up a building plan quickly.

By using the ‘Rectangular Room’ command the Disto measument is handled as follows, note that the 2 requests for the diagonal  have been ignored with an ‘enter’ stroke:

And the correctly scaled rectangle is placed in CAD. The next room is measured in the same way and placed by using a wall thickness offset:

The room is placed and the alignment point and direction selected:

Once you are happy with the align pint and direction bring the new room into line with the 1st one:

Click to select and the wall offset prompt lets you put in the wall thickness:

So using the rectangle room command we can build up a basic plan very quickly. Now we all know just how rare a rectangualr room plan is! So the next step is to develop the rectangle using the ‘square feature’ tool:

The measurments are sent to the command line at the appropriate prompts and the side of the wall the feature is placed is selected by a pick in the graphics area:

This is the ‘build up from boxes tool’. The room outlines can be aligned in any state but its probabaly best to get the edits for each room done in turn to make the alignments easier. How features are added is shown in Scenario 3 below.

Scenario 2 : The room has a complicated plan and the surveyor wants to be sure of the perimeter shape before measuring, the survey needs ‘free hand’ drawing in AutoCAD.

DistToPlan now has a unique Sketch & Measure tool which will allow a sketch plan to be measured and scaled after drawing. Here’s one way of using it:

Zoom scale to 10x (assuming you are starting from scratch)

This will get your aproximate drawing size close to ‘actual size’.

Select the Sketch & Measure tool and note the custom cursor view: you are now working in an automatically grouped line set with a nominal snap running; the comstraints on placing the line can be adjusted in the sketch panel which pops up on use of the command. The grid and snap weighting are controlled by the pop up panel.

The panel should be kept open throughout preparation of  the sketch as you may need to reset the grid step to get the sketch right. The grid value is reset by a click in the graphics area. Sketch out the plan with the ‘rubber band’ line. The sketch is not just a simple line, DistToPlan stores the lines as a group ready for interrogation by  measurement.

Once you are happy with the sketch the perimeter line is finished with a ‘close’ option from the right click context menu ( or ‘C’ in the command line)  the measure panel will open and measurement can begin. Measurements are added for each line, in any order,  on selection the command line prompts for the distance and also relays the CAD distance  as a rough check.

Missing ties can be added to the plan and measured in with the Add Brace option on the panel. For error distribution DistToPlan needs to have 2 fixed points in the plan and these can be identified at this stage with the Fix Pt option.

The measured lines are anotated with the distances entered at the command line, the  selected line for measurement is highlit with a custom pointer:

The direction of the pointer indicates the end of the line that will be adjusted as well as the direction of the anotation text.

Choosing the  fixed points  (or line): To work, the distributed error maths needs 2 fixed points. For best results the should be located on a long wall opposite the closing point. (At the present release, if fixed points are chosen at the start /close of the loop things can go awry).

On completion of the measure sequence selection of the  finish option on the Measure panel runs an error distribution routine (theofitclosed) and, if the figure is within toloerance, it will be adjusted by least squares to close the perimeter. The shift caused by the adjustment is recorded in the drawing by the plot of the node positions (green and blue by default) before and after adjustmet in apropriate layers.

A report is generated and sent to the command line showing the condition of the adjustment.

If needed,  the room can be treated as part of the building plan, at any stage after measurement and the adjustment done at a later time.

Scenario 3 : A FM plan is needed with full anotation of services by use of standardised symbol libraries. To keep track of the operations needed in each room to be measured.

DistToPlan offfers a ‘strategy’ template on the tool pallette. Eash command set needed is prompted by picking off the step on the pallette.

DistToPlan is supplied with a pallette menu which is used to perform 2 key functions.

1.To give acess to the symbol libraries and

2 To control the organisation of the measured data for grouping ( by room, floor plate etc.) so that, if desired, network adjustment by total station can be applied.

The basic plan can be built up using the apropriate measuring tool (e.g the ‘square room’ and align commands used in scenario 1) .

The anotations are added for floor and room height using the prompt from the pallette. Site notes can be added using the add note tool which will attach a reference of a Journal note file or image to the DWG for easy acess to additional information collected by bluetooth camera or site sketches. DistoToPlan will send the new files and prompt to insert them into the project / drawing.

In addition DistToPlan logs the Disto data in a time stamped data file which can be used for either drawing recovery or QA, stores the room geometry for room by room network adjustment if required and supplies a customisable attributed block library for direct DWG insertion.

For full heighting, corner closing and 3D work with a total station TheoLt Building Survey Suite is recomended.

About DistToPlan DistToPlan is available forAutoCAD (full and LT) versions as well as (with some reduced functionality) the AutoCAD alternative BricsCAD from v10 on.

Disto© is a registered trademark of Leica Geosystems Gmbh.

DistoPlan is a registered trademark of LatimerCAD and kubit Gmbh.

TheoLt is a registered trademark of Latimer CAD and English Heritage

AutoCAD is a registered mark of Autodesk Inc.

BricsCAD is a registered mark of Bricsys nv